Ensemble Feature Weighting Based on Local Learning and Diversity

نویسندگان

  • Yun Li
  • Su-Yan Gao
  • Songcan Chen
چکیده

Recently, besides the performance, the stability (robustness, i.e., the variation in feature selection results due to small changes in the data set) of feature selection is received more attention. Ensemble feature selection where multiple feature selection outputs are combined to yield more robust results without sacrificing the performance is an effective method for stable feature selection. In order to make further improvements of the performance (classification accuracy), the diversity regularized ensemble feature weighting framework is presented, in which the base feature selector is based on local learning with logistic loss for its robustness to huge irrelevant features and small samples. At the same time, the sample complexity of the proposed ensemble feature weighting algorithm is analyzed based on the VCtheory. The experiments on different kinds of data sets show that the proposed ensemble method can achieve higher accuracy than other ensemble ones and other stable feature selection strategy (such as sample weighting) without sacrificing stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimum Ensemble Classification for Fully Polarimetric SAR Data Using Global-Local Classification Approach

In this paper, a proposed ensemble classification for fully polarimetric synthetic aperture radar (PolSAR) data using a global-local classification approach is presented. In the first step, to perform the global classification, the training feature space is divided into a specified number of clusters. In the next step to carry out the local classification over each of these clusters, which cont...

متن کامل

Fault Detection of Bearings Using a Rule-based Classifier Ensemble and Genetic Algorithm

This paper proposes a reduct construction method based on discernibility matrix simplification. The method works with genetic algorithm. To identify potential problems and prevent complete failure of bearings, a new method based on rule-based classifier ensemble is presented. Genetic algorithm is used for feature reduction. The generated rules of the reducts are used to build the candidate base...

متن کامل

Self-Adaptive Ensemble Classifier for Handling Complex Concept Drift

In increasing number of real world applications, data are presented as streams that may evolve over time and this is known by concept drift. Handling concept drift through ensemble classifiers has received a great interest in last decades. The success of these ensemble methods relies on their diversity. Accordingly, various diversity techniques can be used like block-based data, weighting-data ...

متن کامل

Combining Classifier Guided by Semi-Supervision

The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...

متن کامل

Diversity in Ensemble Feature Selection

Ensembles of learnt models constitute one of the main current directions in machine learning and data mining. Ensembles allow us to achieve higher accuracy, which is often not achievable with single models. It was shown theoretically and experimentally that in order for an ensemble to be effective, it should consist of high-accuracy base classifiers that should have high diversity in their pred...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012